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Abstract: The key step in accessing the title species (5), the first
nonbenzenoid diisocyanobiaryl, involved an unexpected homo-
coupling of a 6-bromoazulene derivative. The reversible 2e~
reduction of 5 was addressed electrochemically and computa-
tionally. The shifts in energies of the S;—S; and S;—S; transitions
for a series of related 6,6’-biazulenyl derivatives correlate with
the e~-donating/-withdrawing strength of their 2,2’-substituents
but follow opposite trends. Species 5 adsorbs end-on (3 to the
Au(111) surface via one of its —NC groups to form a 2-nm-thick
film. In addition, bimetallic coordination of 5's —NC termini can
be readily achieved.

Azulene is an unusua aromatic hydrocarbon (CioHg) that
comprises an edge sharing combination of five- and seven-
membered sp?-carbon rings. The azulenic and polyazulenic motifs
constitute attractive building blocks in the design of redox addres-
sable, optoelectronic, and conductive materials.*™ Unlike the
frontier molecular orbitals of benzenoid aromatics, the HOMO and
LUMO of azulene are not mirror related and feature mutually
complementary density distributions (HOMO = Highest Occupied
Molecular Orbital, LUMO = Lowest Unoccupied Molecular
Orbital).® This leads to a remarkably low S;—S; excitation energy
for azulene derivatives and enables topological asymmetry in the
electron and hole transport regimes for azulene-based frameworks.*
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Coordination and surface chemistry of linear benzenoid diiso-
cyanoarenes containing one or more linked aromatic rings has been
the subject of growing experimental and theoretical interest,>®
particularly in the context of developing advanced materials that
may support charge delocalization and transport at the nanoscale.”
We have recently engaged in the quest for a novel class of linear
diisocyanoarene linkers based on the nonbenzenoid 2,6-azulenic
framework as represented by the homologous series|.28° For n =
1 (R = —CO;Et) in |, the orientation of the azulenic dipole can be
controlled through regioselective installation and coordination of
the isocyanide junction groups.® For n = 2, three different linear
diisocyanobiazulenyl scaffolds can be envisioned: two symmetric
featuring the 6,6” or 2,2” connectivity of the azulenic moieties and
one asymmetric having the 2,6” central C—C bond. Currently, very
few 2,2, 6,6"-, and 2,6’-biazulenyl derivatives are synthetically
accessible.’® In this Communication, we introduce the chemistry
of the first member of the linear diisocyanobiazulenyl family that

15924 m J. AM. CHEM. SOC. 2010, 132, 15924-15926

is formally derived by linking two 1,3-diethoxycarbonyl-2-isocy-
anoazulene (1)° molecules. To the best of our knowledge, the title
species is not only the first structuraly characterized linear
biazulenyl*® compound but also the sole example of a crystallo-
graphically addressed biazulenyl motif of any connectivity not
embedded into a larger rigid framework.™*
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2 (i) Bapin, (0.26 equiv), 10 mol % Pd(dppf)Cl,+ CH,Cl,, KOAc, DM SO,
100 °C, argon atm.; (i) HC(O)OAc, 50 °C, (jii) POCls, EtsN, 20 °C.

Combining the 6-bromoazulene derivative 28 with bis(pina-
colato)diboron (Bgpin,) in the presence of Pd(dppf)Cl, (dppf =
bis(diphenylphosphino)ferrocene) under the conditions specified in
Scheme 1 afforded brick-red 2,2-diamino-6,6'-biazulenyl 3in a91%
yield. Surprisingly, the best yields of this unexpected, “one-pot”
homocoupling of 2 were achieved by employing a substoichiometric
amount (ca. 0.25 equiv) of B,pin,. No formation of 3 was observed
when the reaction was conducted in the absence of Bopin, under
otherwise identical conditions.*? Interestingly, our attempts to use
0.5 equiv of B,pin, (the stochiometric quantity of B,pin, typically
employed in one-pot homocoupling of organohalides via sequential
Miyaura borylation/Suzuki cross-coupling)™® invariably led to much
lower yields (<37%) of 3. The above quite efficient protocol for
the preparation of 3 evolved from our initial efforts to improve its
original synthesis by Mutafuji, Sugihara et al.*° The latter involved
a Pd(dppf)Cl,-catalyzed borylation of 2 with 1.1 equiv of Bopin,
to isolate the corresponding 6-azulenyl-boronic ester, which was
then cross-coupled with 2 using a different catalyst, Pd(PPhs),Cl,,
to give 3 in a 17% overall yield.**°

Formylation of 3 with acetic-formic anhydride afforded a 79%
yield of sparingly soluble chestnut-colored 2,2’-diformamido-6,6'-
biazulenyl 4, the double dehydration of which gave lavender needles
of 2,2’-diisocyano-1,1",3,3'-tetraethoxycarbonyl-6,6'-biazulenyl 5in
a34% isolated yield. The FTIR and **C NMR spectra of 5 exhibit
signature peaks at ve=y = 2130 cm™! (in Nujol mull) and 6 =
178.6 ppm (in CDCl3), respectively, that correspond to the
isocyanide termini of this air-stable compound.

It is well argued that varying the nature of the substituent in a
2-substituted azulene chiefly affects the energy of its LUMO but
not HOMO.2 The A« Value for the relatively weak Sy—S, transition

10.1021/ja108202d © 2010 American Chemical Society



COMMUNICATIONS

in the electronic spectraof 3, 4, and 5in CH,Cl, appears to increase
upon proceeding from 3** to 4 (474 nm) to 5 (509 nm). This trend
paralels the order of decreasing e -donating/increasing e -
withdrawing strength of the groups at the 2,2-positions in these
6,6"-biazulenyls: NH, > —NHCHO > —N=C. At the same time,
however, 1. Of the more intense higher energy band, which we
tentatively assign as Sy—S,, increases in reverse order 5 (390 nm)
< 4 (421 nm) < 3 (459 nm). Thus, the 2,2"-substitution of the 6,6-
biazuleny! scaffold provides an opportunity to simultaneously tune
the wavelengths of both S;—S; and S;—S; excitations in mutually
opposing directions in the visible region.

Figure 1. Molecular structure of 5 (50% thermal ellipsoids).

The solid state structure of 5 depicted in Figure 1 is remarkably
symmetric with only 1/4 of the molecule being crystallographically
independent. The C3—N1 bond length of 1.165(3) A observed for
5istypical for an isocyano N=C triple bond.® Every carboxylate
unit in 5 is essentially coplanar with the azulenic moiety to which
it is attached. The long axis of 5 spans 17.1 A, as defined by the
C3---C3 distance. The C6—C6 bond connecting the azulenyl rings
in 5is 1.512(4) A long. This distance is statistically shorter than
the C(sp®)—C(sp?) bond of 1.535(4) A connecting the two seven-
membered rings in 1,1',6,6"-tetrahydro-6,6'-biazulene-1,1’-diide,
[HgCro—CioHg)?,*® but only marginally longer than the central
C—C bond length documented for biphenyl (1.494(3)—1.507
A)_16,17

The 66.9° torsion angle between the azulenic planesin crystalline
5 is almost certainly significantly influenced by crystal packing
forces. Our density functional theory (DFT) anaysis of 2,2-
diisocyano-6,6"-hiazulenyl (5a), a truncated analogue of 5 that lacks
all ester substituents, predicts the equilibrium interplanar angle of
52.0° for thismodel compound with the barriersto internal rotation
about the C6—C6" bond to achieve the planar and orthogonal
conformations being AE(0°) = 8.2 kcal/mol and AE(90°) = 1.3
kcal/mal, respectively. Notably, both experimental and recent DFT
studies of bipheny! indicate that the HsCs—CgHs molecule exhibits
the torsional angle of ca. 45° with the rotational barriers AE(0°) ~
AE(90°) < 2.0 kcal/mol in the gas phase.*® While the AE(90°)
values for both 5a and (CgHs), are similar, the higher AE(0°) value
for 5a reflects greater steric congestion about the central C—C bond
connecting the two seven-membered rings in the planar conforma-
tion of 5a compared to the environment of the central C—C linkage
in the planar orientation of biphenyl.

Compound 1, the structure of which may be viewed as one-half of
that of 5, undergoes an irreversible one-electron reduction at E,c =
—1.55 V vs Cp,Fet/Cp,Fe in CH,Cl,. In sharp contrast, the cyclic
voltammogram (CV) of 5 in the same solvent festures a nicely
reversible (ipdipa = 1.0) two-electron reduction wave at the substan-
tiadly less negative potentia of E;, = —1.02 V (Figure 2). This
observation echoes the reduction behavior of the “parent” 6,6-
biazulenyl addressed by Hiinig and Ort in a series of their pioneering

redox studies of various biazulenic motifs.*® The persistence of 5%,
a least on the eectrochemica time scale, can be attributed to the
closed-shell nature of its 6,6'-biazulenide dianion framework (Figure
3, left). 2019420 The singlet electronic configuration of 5%~ is also
suggested by our DFT examination of its model 5a2~. The singlet (S)
dtate of 5a?~ is predicted to be nearly 0.7 eV less energetic than the
triplet (T) state. The DFT calculations show that the reduction process
5a—5a2~ (S) is accompanied by appreciable shortening of the central
C—C bond, as well as by a 30° decrease in the interplanar angle
between the two azulenic moieties (Table 1). The HOMO of 522~ (S)
illustrated in Figure 3 clearly implies the significant double bond
character of the dianion’s central C—C linkage. Similar to 5, the CV
of 3 dso features one reversible reduction wave, which occurs a a
more negative potentid (Ey, = —1.64 V) compared to that of 5 due
to the eectron-donating nature of the —NH, termini.
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Figure 2. Cyclic voltammogram of 5 in 0.1 M ["BusN][PFg]/CH,CI; vs
internal Cp,Fe’/Cp,Fe (1 equiv) at 25 °C. Scan rate = 100 mV/s.

Figure 3. Left: bis(cyclopentadienide)-like resonance form of 52~. Right:
DFT-generated HOMO of 5a% (S).

Table 1. DFT-Generated Relative Energies in the Gas Phase
(AEgas) and in Dichloromethane (AEpcw), Interplanar Dihedral
Angles (o), and the Central C—C Bond Length (d) for 5a, 5a% (S),
and 5a% (T)

Model species AEgs, &V AEpen, 6V a, deg d A
ba 0 0 52.0 1.50
582(S) ~158 —5.90 21.9 143
582 (T) —091 ~523 585 151

The molecule of 5 can be readily used to bridge metal centers.
For example, treatment of in-situ-generated W(CO)s(THF) with 0.5
equiv of 5in THF provided fuchsia-colored [(OC)sW],(u-5) that
features two “(OC)sW” units linked through the 6,6-biazulenyl
bridge by means of the N=C junctions. Complex [(OC)sW](u-5)
undergoes areversible reduction at E;, = —1.01V in CH,Cl,. This
reduction potential isamost identical to that of 5 thereby indicating
that the LUMO of [(OC)sW]x(u-5) is largely bridge-based. The
lowest energy band (Amex = 496 nm) in the electronic spectrum of
[(OC)sW],(u-5) can be assigned to the metal-to-bridge charge
transfer (MBCT), and its molar extinction coefficient (¢) is ca. 35
times greater than that documented for the S;—S; transition for 5.
Notably, the analogous MBCT for [(OC)sW],(u-2,6-diisocyano-
1,3-diethoxycarbonylazulene) has aAms value of 515 nm,® whereas
the corresponding transition for [(OC)sW],(u-1,4-diisocyanoben-
zene) occurs in the UV region (Amax = 370 nm).%*

Exposure of a gold-coated mica substrate to a2 mM solution of
5 in CH,CI, without protection from air led to adsorption of 5 on
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the Au(111) surface. The ellipsometric thickness of the resulting
film, measured at multiple spots on the substrate, was 20.5 + 2.4
A. This vaue is consistent with the molecular monolayer nature
of the self-assembled film featuring approximately parallel orienta-
tion of the long molecular axis of 5 with respect to the surface
normal.® Indeed, for the perfectly upright #* coordination of 5 to
the gold surface (Figure 4), the monolayer thickness can be expected
to be approximately 19.1 A. This estimate is obtained by adding
2.0 A, atypical Au(0)—CNR bond length,® to the 17.1 A distance
between the two isocyanide carbon atoms in 5 (Figure 1).

The grazing incidence reflection absorption infrared (RAIR) spec-
trum of a freshly prepared film of 5 on Au(111) also suggests the
end-on adsorption of 5 to the Au surface. Indeed, the spectrum exhibits
two bands in the isocyanide stretching region (Figure 4). The higher
energy band at 2170 cm* corresponds to ve=y of the C=N terminus
of 5 bound to the gold surface. The broad nature of this band istypical
for aryl isocyanide self-assembled monolayers (SAMS) on gold®® and
can be attributed to some inhomogeneity in the environment of the
surface adsorption sites due to defects in the Au(111) film prepared
viagold vapor deposition.>® Notably, the ve=y stretch for SAMs of 1
on Au(111) also occurs at 2170 cm~*.° Since the isocyanide carbon’s
lone pair is antibonding with respect to the C=N bond,* donation of
electron density from the —NC junction to gold upon chemisorption
of 5 resultsin a pronounced (43 cm™2) blue shift in vy for the gold-
bonded isocyanide terminus of 5 relative to that of the compound in
solution. Concurrently, such coordination should induce a dight
positive charge”™ within the m-system of 5, which may lead to
weakening of the C=N bond of the unbound isocyanide group,
provided there is a sufficient extent of conjugation between the two
azulenyl moieties. In accord with this argument, the sharp ve=y band
at 2119 cm™ in the RAIR spectrum in Figure 4 that corresponds
to the uncoordinated —N=C end of 5 is depressed by 8 cm™* relative
to ve=y Observed for 5 in CH,Cl, solution (or by 11 cm™* compared
to ve=y for the bulk compound in Nujol mull). Interestingly, when
adsorbed on metdlic gold, linear benzenoid diisocyanoarenes featuring
up to three linked arylene units show 2—9 cm™? red shiftsin vy for
their free —N=C end relative to vy for the corresponding bulk
SJbﬂanCESZZb'd
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Figure 4. Left: schematic drawing of the terminal upright (;7%) bonding of
5 to the gold surface. Right: vc=y regions of (A) FTIR spectrum of 5 in
CH,Cl, solution and (B) RAIR spectrum of a SAM film of 5 on Au(111).

The SAM of 5 described herein constitutes the first example of
a molecular film involving a biazulenic scaffold. Accessibility of
such SAMs presents a hitherto unavailable intriguing opportunity
to experimentally probe’ the conductivity characteristics of a 6,6'-
biazulenyl-based molecular wire. Further studies advancing the
coordination and surface chemistry of the 6,6’-biazulenyl and 6,6'-
biazulenide frameworks are underway in our laboratory.
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